
FPGA based Hierarchical Architecture for Parallelizing RRT

Gurshaant Singh Malik Krishna Gupta K Madhava Krishna
Shubhajit Roy

Chowdhury

ABSTRACT
This paper presents a new hierarchical architecture for par-
allelizing the computation intensive rapidly exploring ran-
dom tree problem. The architecture resembles a tree like
structure that agglutinates minimal inter-module commu-
nication of a shared memory with data integrity of a dis-
tributed memory. Another novelty of this research has been
in quantitatively analysing the performance metrics of the
RRT algorithm across numerous embedded hardware so-
lutions and ultimately implementing this algorithm on an
FPGA to achieve hardware level optimization that offers
real time performance and economical power consumption
levels. We then analyse our implementation against hard-
ware implementation of other scalable parallel RRT methods
for motion planning.

CCS Concepts
•Computer systems organization→ Robotic control;
•Hardware → Programmable logic elements; Hard-
ware accelerators; Reconfigurable logic applications;

Keywords
Rapidly Exploring Random Tree; Field Programmable Gate
Arrays;

1. INTRODUCTION
Sampling based methods for motion and path planning

have gained more interest during the last decade, as com-
puter power has increased. In the field of robotics, the
Rapidly exploring Random tree (RRT) has become the cus-
tomary algorithm for solving mathematically complex single-
query motion planning problems [1] involving Kinematic,
Holonomic, Non-Holonomic or Kino-dynamic closure con-
straints [1],[2],[3]. For improving the performance of RRT,
techniques like biased exploration [4], [5], controlled sam-
pling [6], and faster nearest neighbor search [7] have been
employed. Considerable research effort has also gone into

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AIR ’15, July 02 - 04, 2015, Goa, India
c© 2015 ACM. ISBN 978-1-4503-3356-6/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2783449.2783461

achieving speedup of sampling based motion planning by
parallelizing it [8], [9]. Our work centers around multiple
modules of RRT working on a single map for single query
motion planning of Mobile Robotics.

Amongst the scalable parallel RRT methods proposed so
far, the design of distributed RRT [8] proposes the use of dis-
tributed memory architecture and updates all the local road-
maps by the use of MPI (Message Passing Interface). An-
other implementation, K-distributed RRT [9], aims to min-
imize inter-process communication by using STAPL frame-
work to create a globally shared road-map.

In the field of robotics, FPGAs are capable of delivering
tightly packed, energy efficient infrastructures adept in fast
real time performance. An FPGA allows gate level control of
system architecture. This allows the designer to tap the po-
tential of hardware design, allowing control over minute de-
tails of arithmetic design, real time parallelization, pipelin-
ing of sequential processes. The hardware level flexibility
afforded by FPGAs results in designs that are not only fast,
but also small and power efficient. FPGA boards generally
consume small physical area, making it an ideal solution for
robotic systems with constrained dimensions. To confirm
our hypothesis, a quantitative analysis of numerous embed-
ded hardware solutions, including FPGA, is presented in the
results section.

2. ARCHITECTURE FOR PARALLELIZING
RRT

2.1 Current challenges
Since RRT involves randomized exploration of the sample

space, ours and many proposed algorithms [8], [9], use the
principle of exploratory decomposition as their foundation.
In other words, each instantiated RRT module produces its
own output and through different write mechanisms, the
outputs are integrated to build the road-map. Fig. 1 pro-
vides an overview of this design philosophy.

In a multi-module RRT design, an important issue is to
decide the write access mechanism that integrates the data
from multiple modules and then updates the road-map. There
are 2 general philosophies: 1) Distributed 2) Shared. The
distributed philosophy employs a scheme by which each RRT
module will have its own local road-map. As a result, changes
made by it to its local road-map will have no effect on other
road-maps. Hence, as shown in Fig. 2, we need a ’medi-
atorâĂŹ system that updates each RRT-local road-map to
changes made by other RRT modules. This will incur sig-
nificant inter-module communication time in case of large



Figure 1: Exploratory decomposition

scale parallelization.

Figure 2: Distributed design philosophy

Figure 3: Shared design philosophy

The shared design philosophy, shown in Fig. 3, allows all
the RRT modules to have access to the same global road-
map. Hence, there is virtually no inter-module communi-
cation. But it adds the complexity of data integrity. Since
all RRT modules have access to the same global road-map,
large scale parallelization, without scheduling, can geometri-
cally increase traffic on global address space, leading to data
collisions. Scheduling in a large scale parallel system, on the
other hand, will incur significant waiting time, resulting in
a slower system overall.

The aim of our research has been to come up with a scal-
able write access mechanism that combines data integrity
(distributed) with minimum inter-module communication
(shared) and optimize it further by creating a hardware de-
sign of the same on an FPGA.

2.2 Proposal
A very brief overview of our proposal is shown in Fig.

4. Due to the scale of the algorithm, in order to clearly

delineate, we subsequently explain each of the highlighted
modules in the below image individually and finally present
the integrated design. It should be stressed that using an
FPGA as our ecosystem allows all the modules to run in
parallel in real time. Hence, module level bottlenecks do
not transmute into system level bottlenecks.

Figure 4: One of the possible designs for 16 RRT Modules

2.2.1 RRT
Multiple instantiations of the RRT module work to achieve

multifarious, indiscriminate exploration on a single configu-
ration space.

Algorithm 1: Rapidly Exploring Random Tree

input : configuration space C, root qinit

output: new node qnew

1 while not RRTdone do
2 qrand ←− sampleRandomStateC;
3 qnear ←− nearestNode(map, qrand);
4 qnew ←− kinematicExtend(qnear, qrand);
5 if | qnew − qgoal |< tol.Error then
6 RRTdone;

7 wait.poll();
8 transferNewNode(T );
9 acknowledge();

As shown in Algorithm 1, the first step is to randomly
sample the configuration space. The next step is to find the
nearest node to this randomly sampled point. For the mobile
robot in question, a kinematically constrained, collision free
path is laid from the nearest node in the direction of the
random node. The RRT module then waits to be polled
by its parent to transfer the generated nodes before running
another iteration of the exploratory algorithm.

2.2.2 Polling Module
The polling module is a custom buffer stack designed to

periodically sample the RRT modules ascribed to it. In the
event of completion of a run of RRT, the RRT module waits
to be polled by the polling module to transfer the generated
data before running another iteration of RRT. The data is
then transferred through a write-acknowledge mechanism to
preserve data integrity.

As shown in Fig. 5, the POLL periodically polls the RRT
modules. The first 4 rising edges of clock do not lead to
capture of the data bus since none of the 4 RRT modules
are ready to transfer data when they are polled. At the 5th



Figure 5: The illustrative inset is only for showcasing the
position of POLL

rising edge of clock, RRT0 is polled successfully and hence
the data bus is captured by it. RRT0 then transfers all the
data to the custom stack before freeing the data bus for
polling to resume.

2.2.3 FIFO
As the name suggests, FIFO is a first in-first out stack. It

polls FIFOs, other polling modules, but not RRT modules.
Periodic polling for write access to module underneath pre-
serves data integrity while instant read access upon request
by higher level modules ensures minimum data flow latency.
The First in-First out nature of the stack ensures chronolog-
ical queuing up of data. Fig. 6 shows the working of FIFO
in detail.

Figure 6: The illustrative inset is only for showcasing the
position of FIFO

The data stack shown belongs to the FIFO. At the first
rising edge of clock, POLL0 is polled for data and the par-
ent module of FIFO requests read access of FIFO. Hence,
DATA0 is transferred to the parent module. At the second
rising edge of clock, the POLL1 is successfully polled and
captured. Hence, POLL1 transfers DATAP1 to the FIFO.
At the third rising edge, POLL2 is unsuccessfully polled. At
the 4th rising edge, the parent module again requests a read
access. As a result, DATA1 is transferred to it. Hence the
FIFO module continues to periodically poll its child modules
and grants instant read access to the parent module upon
request.

2.2.4 Integrated Design

As shown in Fig. 7, the data stems from the RRT modules
and flows through higher levels of hierarchy to reach the
global map. At the deepest level, P.0 chronologically polls
(RRT.0, RRT.1), P.1 polls (RRT.2, RRT.3) and so on.Going
up, F.0.0 polls (P.0, P.1), F.0.1 polls (P.2, P.3) and so on.
Going up a level, F.1.0 polls (F.0.0, F.0.1) and F.1.1 polls
(F.0.2, F.0.3). Finally, at the highest level, the global road-
map is updated by F.1.0 and F.1.1.

Figure 7: 16-RRT binary tree design.

At all levels, chronological polling for data by parent mod-
ule preserves data integrity (distributed). Since scheduling
has to happen only amongst child modules of the same par-
ent (siblings), the waiting time before data from a child mod-
ule starts to flow is significantly reduced (shared). This is
a pliant architecture since the designer has control over the
number of module instantiations at any level and the overall
depth of the tree. Since any child module only communicates
with its parent, the designer can achieve zero intra-level com-
munication. Polling only amongst siblings ensures zero data
collision and fast data flow.

3. FPGA IMPLEMENTATION
The design test platform, VirtexTM-6XC6VLX75T FPGA

delivers 6.6Gbps GTX trans receivers and built-in PCIe and
tri mode Ethernet MAC blocks that help meet higher band-
width and performance demands with less power.

Figure 8: Technology Schematic of the Map

The global road-map has been designed as a BLOCK
RAM with single port write channel. The output lines map
to the 2D configuration space as shown in the technology
schematic of the map in Fig. 8 . Each output string details
information about a specific region of the map and the child
32 bit strings represent the Cartesian co-ordinates the robot
has traversed. The multiplexer at the input allows one of
the multiple modules to access the single write port.

The native FIFO can be customized to utilize BLOCK
RAM or DISTRIBUTED RAM or built in FIFO FPGA re-
sources.As the RTL and technology schematics in Fig. 9
show, we use built in FIFO resources to create high perfor-
mance , area optimized FIFO module. The First Word Fall



Figure 9: The RTL and Technology Schematic of FIFO

Through is chosen as the mode of operation for the FIFO
interface.

Figure 10: The RTL and Technology Schematic of POLL

The RTL and technology schematics in Fig. 10 show the
hardware level implementation of the polling module. The
POLL is implemented as a sequential Finite State Machine
(FSM). Isochronal cyclic polling of child RRT modules ger-
minated by rising edge of clock leads to capture of data bus
by one of the children, which then transfers its generated
nodes via write-acknowledge mechanism.

A pseudo-random number generator generates a random
state for the mobile robot in use. We use the box [7] method
to find the nearest node. Deployment of DSP48E1 slices
minimizes the time complexity of distance computation. CORDIC
cores are used for computation of trigonometric functions.
DSP slices are then used for path laying. Fig. 11 shows the
design overview of RRT.

Figure 11: Design overview of RRT

4. RESULTS

4.1 Platform analysis
The platforms that were analysed included an ARMR©

CortexTM-A7, IntelR© coreTM-i5 2430M, IntelR© AtomTM N455,
ArduinoR© DuemilanoveTM-328 and a VirtexTM-6 FPGA.

The test environment consisted of 3 different configuration
spaces measuring 200 × 200 each as shown in Fig. 12. The
tests were run on a ground differential drive robot with 3
degrees of freedom.

Figure 12: Test Environment

Performance analysis consisted of adding 2, 4, 8, 16, 32,
64, 128, 256, 512 and 1024 collision free nodes to the test
environment. Since RRT is probabilistic by nature, each
test case was run for 8000 iterations and mean over the
whole resultant sample space of the 3 configuration spaces
was computed. Power consumption was measured by run-
ning the algorithm with no exit condition for 15 minutes.
The average of power over the complete time-line was then
computed.

Let TN (p) be the time taken by platform p to add N
nodes to the test environment. Let P (p) be the average
power consumed by platform p. We define:

Relative.PerformanceN (p) =
TN (FPGA)

TN (p)

Relative.ThroughputN (p) =
TN (FPGA)× P (FPGA)

TN (p)× P (p)

As shown in Fig. 13, the hardware implementation of the
algorithm on VirtexTM-6 FPGA performs faster compared
to its software implementation across all the platforms. The
IntelR© i5 performs the fastest among the software implemen-
tations with a best relative performance of 0.38. The IntelR©

AtomTM comes in a distant third with a best relative perfor-
mance of 0.08, followed by CortexR© A7. The ArduinoR© is
only able to add a maximum of upto 64 nodes before it runs
out of SRAM. Trigonometric and fixed point computations,
heavily used in RRT, combined with high I/O latency, tend
to bottleneck the performance of the software implementa-
tion. Through the use of dedicated hardware like DSP48E1
slices and relatively zero I/O latency, such bottlenecks do
not arise in hardware.

As shown in Fig. 14, although VirtexTM-6 FPGA con-
sumes the second highest power at 2.5 W, it still offers the
best combination of speed and power consumption. The
IntelR© AtomTM and CortexR© A7, with their low power con-
sumption (518 mW, 397 mW), edge ahead of the fast but
high power consuming (9.5 W) IntelR© i5. Reconfigurable
architecture of an FPGA allows us to fine-tune the design
for lower power consumption or better performance in accor-
dance to the specifications of the mobile robot in question.

4.2 Algorithm Analysis
This section presents a quantitative analysis of the 3 algo-

rithms: 1)Hierarchical 2)Distributed 3)K-distributed. Con-
sequently, distributed and K-distributed were also ported
to VirtexTM-6 FPGA. We believe that by harnessing the
flexibility of FPGA systems at gate level hardware design,
one can further reduce the inter process communication to
achieve better speed up and efficiency. The current hier-
archical architecture exploits this hardware level flexibility



Figure 13: Relative Performance

Figure 14: Relative Throughput

afforded by an FPGA to improve upon the speedup and
efficiency of the earlier methods. In the subsequent compar-
isons, K=1 is same as the distributed design, whereas K>1
refers to the K distributed algorithm.

Configuration spaces with varying degrees of geometrical
constraints were used as test environment, as shown in Fig.
15. Inspired by the test environment of Distributed RRT,
we used 2D planar projections of the same problem. The
tests were run on a ground differential drive robot with 3 de-
grees of freedom. GAB, with the longest distance to cover,
involves very weak geometrical constraints. BCL has a rel-
atively short pathway but is geometrically constrained by
several side chain blocks. CALB has the tightest geometri-
cal constraints, with the pathway constrained by side chain
blocks of varying length. The pathway is shorter than GAB
but longer than BCL.

Figure 15: Test Environment

Let P be the total number of RRT modules instantiated.
We define T (P ) as the time taken by an algorithm with P
modules to reach the desired configuration. The RRT, as
delineated in Algorithm 1, was used for this purpose.

Speedup S(P ) = T (1)
T (P )

Efficiency E(P ) = S(P )
P

As more and more modules are added in parallel, the
speedup is a good reflection of the scalability of the algo-
rithm. Theoretically, S(P ) is bounded by P but we observed

super linear speedup during our tests (S(P ) > P ).
The test cases for the above mentioned analysis included

estimation of T (P ) , S(P ) and E(P ) parameters for P=1,
2, 4, 8, 16, 32, 64, 128. Owing to the probabilistic nature of
the algorithms, the parameters were averaged out over 1000
iterations of each test case. The focus of the analysis was to
map the scalability of the algorithm to module instantiations
and physical constraints of the map.

As shown in Fig. 16, the hierarchical design scales much
better than distributed and K-distributed for GAB with the
best speedup of 22.5. The Distributed comes behind hier-
archical with maximum speedup of 7.1. The K-distributed
offers the lowest speedup out of all three, with K=2 offering
a relatively higher speedup of 6 with respect to K=8. All 3
algorithms scale better with the tighter constrained configu-
ration space of BCL. The hierarchical scales to a speedup of
26, followed by distributed that offers a maximum speedup
of 15. K=8 for K-distributed comes in last with a speedup
of 10. CALB, with the tightest constraints, scales the dis-
tributed design the best with respect to its scalability in
other configuration spaces. Although hierarchical still show-
cases the best speedup of 25, it is closely followed by the
distributed design with a speedup of 24. The K-distributed
RRT offers a speedup of 22 and 13.5 for K=2 and K=8 re-
spectively. We now qualitatively discuss the test results.

Hierarchical architecture has been designed to reduce inter-
module communication by limiting scheduling to occur amongst
siblings only. In contrast, the addition of modules in dis-
tributed RRT introduces a large inter-module communica-
tion overhead which weighs down the speedup. As the Fig.
16 shows, the hierarchical design generally scales better than
the distributed design in view of this fact. The configuration
space of GAB offers expansive, unconstrained areas. Hence
a substantial numbers of nodes can be added in a small time-
line. This introduces an exhaustive amount of communica-
tion load, causing the distributed design to scale poorly rel-



(a) BCL-Speedup (b) CALB-Speedup (c) GAB-Speedup

(d) BCL-Efficiency (e) CALB-Efficiency (f) GAB-Efficiency

Figure 16: Comparative analysis of Heirarchical, Distributed and K-Distributed (K=2,8) for different configuration spaces.The
graphs have a smoothing factor of 0.2

ative to the hierarchical design. Relative to GAB, BCL has
tighter physical constraints. Slower addition of nodes result
in a smaller communication/scheduling overhead, resulting
in both algorithms to scale better. Out of the 3 configura-
tion spaces, CALB offers the most unyielding physical con-
straints. The resultant near zero communication/scheduling
load allows both the algorithms to scale really well and dis-
tributed to perform nearly as well as heirarchical.

To reduce inter-module communication, K-distributed RRT
introduces a parameter K that can be adjusted to vary how
often the global graph is updated by one individual proces-
sor. As a result, a higher K value results in trees more local-
ized to a region of the configuration space. This results in
localized propagation of trees based on the local road-map
affecting performance. Unsurprisingly, K-distributed RRT
scales very poorly to increase in K values.

5. CONCLUSIONS
This paper introduced an FPGA implementation of hier-

archical design for parallelizing RRT. We backed our choice
of platform by quantitatively analyzing performance, power
and throughput parameters on various embedded solutions.
FPGA implementation shows a tangible increase in perfor-
mance and throughput, attributed to relatively low I/O la-
tency and custom hardware design of the algorithm.

A major portion of this paper focused on a new hierarchi-
cal design of parallelizing RRT that combined distributed
memory’s data integrity with shared memory’s fast data
flow. We presented a tree like structure that reduced schedul-
ing to occur amongst siblings only. Quantitative analysis of
this design over 3 different configuration spaces revealed that
the hierarchical design scaled better relative to the distribu-
tive and K-distributive design. We attribute this behaviour
to the design being relatively immune to increase in inter-
module communication load.

6. REFERENCES

[1] Steven M LaValle and James J Kuffner Jr.
Rapidly-exploring random trees: Progress and
prospects. 2000.

[2] Steven M LaValle and James J Kuffner. Randomized
kinodynamic planning. The International Journal of
Robotics Research, 20(5):378–400, 2001.

[3] Juan Cortés and Thierry Siméon. Sampling-based
motion planning under kinematic loop-closure
constraints. In Algorithmic Foundations of Robotics VI,
pages 75–90. Springer, 2005.

[4] Alexander Shkolnik, Matthew Walter, and Russ
Tedrake. Reachability-guided sampling for planning
under differential constraints. In Robotics and
Automation, 2009. ICRA’09. IEEE International
Conference on, pages 2859–2865. IEEE, 2009.

[5] Russ Tedrake. Lqr-trees: Feedback motion planning on
sparse randomized trees. 2009.

[6] Léonard Jaillet, Anna Yershova, Steven M La Valle,
and Thierry Siméon. Adaptive tuning of the sampling
domain for dynamic-domain rrts. In Intelligent Robots
and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ
International Conference on, pages 2851–2856. IEEE,
2005.

[7] Mikael Svenstrup, Thomas Bak, and Hans Jørgen
Andersen. Minimising computational complexity of the
rrt algorithm a practical approach. In Robotics and
Automation (ICRA), 2011 IEEE International
Conference on, pages 5602–5607. IEEE, 2011.

[8] Didier Devaurs, Thierry Siméon, and Juan Cortés.
Parallelizing rrt on distributed-memory architectures.
In Proc. IEEE ICRA’11, pages pp–2261, 2011.

[9] Nick Stradford, Sam Ade Jacobs, and Nancy M Amato.
Scalable parallel rrt method for motion planning.

View publication statsView publication stats


