
FPGA based Combinatorial Architecture for Parallelizing RRT

Gurshaant Singh Malik, Krishna Gupta, K Madhava Krishna and Shubhajit Roy Chowdhury

Abstract—Complex tasks are often handled through soft-
ware implementation in combination with high performance
processors. Taking advantage of hardware parallelism, FPGA is
breaking the paradigm by accomplishing more per clock cycle
with closely matched application requirements. With the aim
to minimise computation delay with increase in map’s size and
geometric constraints, we present the FPGA based combinatorial
architecture that allows multiple RRTs to work together to
achieve accelerated, uniform exploration of the map. We also
analyse our architecture against hardware implementation of
other scalable RRT methods for motion planning. We observe
notable furtherance of acceleration capabilities with the proposed
architecture delivering a minimum 3X gain over the other
implementations while maintaining uniformity in exploration.

I. INTRODUCTION

In the field of robotics, FPGA is capable of delivering
tightly packed, energy efficient infrastructures adept in fast real
time performance. FPGA implementation of Image processing
descriptors [1], [2], Random Decision Tree Body Part Recog-
nition Using FPGA [3] and FPGA based collision avoidance
[4] further validate our belief. An FPGA allows gate level
control of system architecture. This allows the designer to tap
the potential of hardware design, allowing control over minute
details of arithmetic design, real time parallelization, pipe-
lining of sequential processes. The hardware level flexibility
afforded by an FPGA results in designs that are not only fast,
but also small and power efficient. FPGA boards generally
consume small physical area, making it an ideal solution for
robotic systems with constrained dimensions.

Sampling based methods for motion and path planning
have gained more interest during the last decade, as computer
power has increased. In the field of robotics, the Rapidly
exploring Random Tree (RRT) has become the customary algo-
rithm for solving mathematically complex single-query motion
planning problems [5] involving Kinematic, Holonomic, Non-
Holonomic or Kino-dynamic closure constraints [5], [6], [7].
Apart from the domain of robotics, it has proven itself as
an effective substructure in the field of structural biology
and medicine, manufacturing, virtual prototyping to name a
few. For improving the performance of RRT, techniques like
biased exploration [8], [9], controlled sampling [10], and faster
nearest neighbour search [11] have been employed. Consider-
able research effort has also gone into achieving speedup of
sampling based motion planning by parallelizing it [12], [13].

Thus the main contribution of the paper lies in exploiting
the hardware flexibility offered by an FPGA to achieve a
faster and more homogeneous exploration of the workspace by
parallel growing RRTs. The proposed architecture is compared
with distributed [12] and K-distributed architectures [13]. This
architecture delivers an acceleration gain that is 3X to the best
of the state of the art architectures with a far more uniform
per-unit area coverage of the map. This is made possible

through a novel multi-port hardware architecture that allows
for zero latency read/write access to the N RRTs that grow in
parallel. With the proposed architecture, apart from significant
acceleration in exploration of the map, multiple RRTs work
together in parallel to achieve a more homogeneously explored
map as compared to a single RRT. As shown in Fig. 1, by
allowing each of the 16 RRTs to explore the entire map in
parallel but limiting the sampling space to evenly distributed,
exclusive sub-spaces, an accelerated, uniform exploration of
the map should be expected. It should be observed that an
RRT can latch on to the explored portion of the entire map.
Only the sampling is limited to its sub-space.

Fig. 1. Distribution of sampling space for N=16

Employing the proposed architecture (realizable only in
a hardware implementation), for the same amount of time,
the explored map becomes denser and homogeneous with the
increase in number of RRTs working in parallel, as shown in
Fig. 2. This observation will be delineated in more detail in
the results section.

Fig. 2. Demo of combinatorial architecture for differentially steered system

II. ARCHITECTURE FOR PARALLELIZING RRT

A. Current Challenges

Since RRT involves randomized exploration of the map,
ours and many proposed algorithms [12], [13], use the princi-
ple of exploratory decomposition [14] as their foundation. In
other words, each RRT produces its own output and through
different write mechanisms, the outputs are integrated to build978-1-4673-9163-4/15$31.00 c© 2015 IEEE

Fig. 3. Schematic illustration of exploratory decomposition

the explored map. Fig. 3 provides an overview of this design
philosophy.

In such a parallel RRT design, an important issue is to
decide the write access mechanism that integrates the data
from multiple RRTs and then updates the global explored map.
There are 2 general philosophies: 1) Distributed and 2) Shared.
The distributed philosophy employs a scheme by which each
RRT will have its own local explored map. As a result, changes
made by it to its local explored map will have no effect on
other RRT’s local explored maps. Hence, as shown in Fig.
4, we need a mediator system that updates each RRT’s local
explored map to changes made by other RRTs. This will incur
significant inter-RRT communication time in case of large
scale parallelization.

Fig. 4. Schematic illustration of distributed philosophy

The shared design philosophy, shown in Fig. 5, allows
all the RRTs to have access to the same global explored
map. Hence, there is virtually no inter-RRT communication.
But, since all RRTs will have access to the same global
explored map, large scale parallelization, without scheduling,
can geometrically increase traffic on global address space,
leading to data collisions.

B. Proposed Write Access Mechanism

Owing to the probability reliant exploration of RRT, accu-
rate prognosis of data arrival time is an ambiguous task. As
shown in Fig. 6, N RRTs working in parallel can result in 2N

possible cases during a write window to the global explored
map.

Hence, as shown in Fig. 7, the first part of the architec-
ture is a multi-port random access memory with the ability

Fig. 5. Schematic illustration of the Shared design philosophy

Fig. 6. Illustration of possible cases during a write window for N RRTs

to handle [0, N] variable, asynchronous write and/or read
transactions during a write and/or read window. Each line of
data in this memory will store the explored M degrees of
freedom of the mobile robot in the form [DOF1, DOF2,,
DOFM].

Fig. 7. Schematic illustration of combinatorial architecture

As shown in Fig. 7, the second part of the architecture is
a combinatorial circuit that ascertains the current case of the
2N cases during the write window and feeds the appropriate
write control signals to the memory.

This allows each of the N RRTs to have access to the write
window with zero latency/scheduling since this write access
mechanism combinatorially accounts for all the possible 2N

cases. This results in accelerated exploration of the map and
preserves integrity of the freshly explored data. It should be
observed that only a hardware(FPGA/ASIC) implementation of
this mechanism is realizable since the parallel writes need to
be triggered in real time, a luxury not afforded to conventional
software implementations.

III. FPGA IMPLEMENTATION OF THE COMPLETE SYSTEM

Optimised for high-performance logic and DSP with low
power serial connectivity, the design test platform, VirtexTM-
6XC6VLX75T FPGA delivers 6.6 Gbps GTX transceivers and
built-in PCIe and tri-mode Ethernet MAC blocks that help meet
higher bandwidth and performance demands with less power.
The table below provides system parameters.

System Parameters
Slices 11,640 Total BRAM(Mb) 5.48
Logic Cells 74,496 DSP48E1 288
CLB Flip Flops 93,120 Area(mm2) 23*23

Register transfer level(RTL) design removes the mathemat-
ical abstraction of integers and forces the designer to work
on binary sequences of bits. For our design, the cartesian co-
ordinates are represented as 32bit long, fixed-point, 2s compli-
ment binary strings where the 24 MSB represent the integer
part and the 8 LSB represent the fractional part. This rep-
resentation provides an incremental resolution of 0.00390625
in decimal format. The geometrical angle is represented as a
16bit long, fixed point, 2s compliment binary string where the
3 MSB represent the integer part and the 13 LSB represent
the fractional part, affording an incremental resolution of
0.00012207 radians.

The 3 sub-systems : 1.) RRT, 2.) The combinatorial circuit
and 3.) The multi-port memory work together to constitute
the complete system. On account of the scale of the FPGA
implementation, in order to clearly delineate, the behavioral
modelling of each is explained in separate subsections.

A. Implementation of Single RRT

As Algorithm 1 explicates, a single RRT consists of 4
steps : 1.) Random sampling, 2.) Nearest neighbour search,
3.) Collision detection and 4.) Kinematic path extension.

Algorithm 1: Rapidly Exploring Random Tree
input : map M , root qinit, rrtStop
output: new explored map M
while ∼rrtStop do

qrand ← sampleRandomStateC ;
qnear ← nearestNode(C,qrand) ;
if collisionFree(C) then

qnew ← kinematicExtend(qnear, qrand) ;
wait.Access → update.C → release.Access ;

1) Random Sampling: Pseudo-Random and Pseudo-
Independent numbers from a uniform distribution are gener-
ated using a modified multiplicative congruential algorithm.
These numbers are then synthesised and mapped to a 640 KB
Read Only Memory(ROM), as shown in Fig. 8(I), subsequently
used as the source for random numbers.

2) Nearest Neighbour Search: As shown in Fig. 8(II),
32 bit input combinatorial subtractors feed the coordinate
difference to dedicated, zero latency multipliers to generate
distance numerals, which are then subsequently fed to the
combinatorial comparator to identify the nearest neighbour.

3) Collision detection: The original map, including the
objects, is cached to a Read Only Memory(ROM), the size
of which is equal to the dimensions of the map. The data is
stored in binary, where ’0’ represents a free space unit and
’1’ represents an obstacle unit. Subsequent AND operation
between the ROM and the robot’s configuration ascertains the
collision state, as shown in Fig. 8(III).

4) Kinematic Path Extension: The implementation of this
sub-module is directly correlated to the kinematics and dynam-
ics of the robot. In general, CORDIC cores are deployed for
computation of trigonometric functions. DSP48E1 slices are
used for high speed multiplication and addition requirements,
as shown in Fig. 8(IV)

Fig. 8. Top to bottom : Sampler, Nearest Neighbour, Collision Check,
Kinematic Extension

B. Implementation of Combinatorial Circuit

For N RRTs, the 2N possible cases and the corresponding
control signals of the multi-port memory are mapped to
cascaded look up tables(LUTs). An N bit string, where each
bit corresponds to a RRT, is used as input. A ’1’ bit means
that the corresponding RRT is requesting access and a ’0’ bit
means otherwise. The outputs of this module are the control
signals of the multi-port memory, as shown in Fig. 9.

C. Implementation of Multi-port Memory

With a global address space, the multi-port memory is
implemented as a heap of N distributed, single channel mem-

ories, each of size (400 ∗M)/N KB, where M is the number
of degrees of freedom of the robot and N is the number of
RRTs. The read and write channels are designed asynchronous
to enable independent read and write transactions. Auxiliary
multiplexers on the read and write channels apportion the
global address space to local address spaces, as shown in Fig.
9.

Fig. 9. Top to bottom : Memory, Combinatorial circuit

Fig. 9 details the complete architectural abstract of the
system for N = 6. N RRTs can result in 2N different transac-
tion combinations. As delineated in Fig. 10, the combinatorial
circuit and the multi-port memory guarantee that each of
these 26 combinations complete in a single write window.
During first write window, one RRT(R1) requests for access. 3
RRTs(R3, R2, R1) request for access during second window.
All 6 RRTs request access during the next window and so on.
To sum it up, this ensures that each RRT is granted instant
access to the write window upon request, culminating in an
accelerated exploration of the global map.

Fig. 10. Combinatorial architecture’s instant access to write window

IV. RESULTS

The architecture was designed to attain accelerated, homo-
geneous levels of exploration that are in proportion to levels of
parallelism of the system. We deployed a three wheeled mobile
robot equipped with a differentially steered drive system and
carried out the trials in 3 maps, each measuring 80X80 unit2,
detailed in Fig. 11.

Fig. 11. Details of the test system deployed for quantification of analysis

We analyse the results against 2 different architecture for
parallel RRTs : 1.) Distributed RRT [12] and 2.) K-Distributed
RRT [13]. Distributed RRT proposes the use of distributed
memory architecture that calls for inter-RRT scheduling for
access to the global map. With increase in number of RRTs,
the traffic on the map bus increases and leads to increased
inter-RRT scheduling times. The K-distributed RRT introduces
a variable K that quantifies the number of nodes an RRT
adds to its local map before requesting for access of the
global map. With increase in the value of K, although the
inter-RRT scheduling time drops, the global explored space
trends towards localised exploration, leading to non uniformly
explored map.

(a) Map 1 : Time VS No. of RRTs (b) Map 2 : Time VS No. of RRTs (c) Map 3 : Time VS No. of RRTs

(d) Map 1 : Density variation VS No. of RRTs (e) Map 2 : Density variation VS No. of RRTs (f) Map 3 : Density variation VS No. of RRTs

Fig. 12. Comparative analysis of Combinatorial, Distributed and K-Distributed for the three different test environments

With the 3 maps as the test environment, Fig.12 quantifies
the performance of the 3 different architectures of RRTs, with
1.) Acceleration in exploration, 2.) Uniformity of exploration
and 3.) Power consumption serving as benchmarks of evalua-
tion. We discuss the performance in these categories in separate
subsections.

A. Acceleration in exploration

For quantification of results for each map, time taken to
add 10, 000 nodes to the explored space was measured for N
= 1, 4, 16, 64, 256 RRTs. Owing to the probabilistic nature
of RRT, each iteration was performed 1000 times to get mean
values, which are presented in Fig. 12 (a), (b), (c).

Increase in inter-RRT scheduling time with increase in
number of RRTs renders distributed RRT to be the slow-
est architecture of the three. For low number of RRTs, K-
distributed RRT for K = 4 and K = 16 performs faster explo-
ration compared to combinatorial architecture. The explanation
behind this lies in the 4-way handshake between an RRT
and the memory during memory capture. An RRT transfers
each node to memory in combinatorial architecture whereas an
RRT transfers K nodes in K-distributed architecture. Hence,
the handshake occurs once every K nodes in K-distributed
architecture compared to combinatorial architecture, where it
occurs during every node transfer. The extra cycles spent on
handshakes slows down the combinatorial architecture com-
pared to K-distributed architecture for low number of RRTs.
But, with increase in number of RRTs, the combinatorial ar-
chitecture overtakes the K-distributed architecture. The reason
behind this observation is that inter-RRT scheduling in K-
distributed architecture, reduced as compared to distributed
architecture, still increases with increase in number of RRTs.
This scheduling eventually weighs out the cycles saved on
handshakes. Combinatorial architecture, which suffers from no
such scheduling, keeps accelerating with increase in number of
RRTs. For N = 256, the combinatorial architecture displays an

acceleration gain of 30.81 (Map 1), 30.86 (Map 2) and 30.73
(Map 3).

Please note that the reason behind combinatorial architec-
ture transferring every node instead of K nodes in burst is
explained in next subsection.

B. Uniformity of exploration

To calculate the variation in density, the explored space
was discretized into 6400 cells. 10,000 nodes were then added
to the map. Variance of the obstacle free cells was calculated.
Please note that the mean is calculated just for the cells that
do not completely contain an obstacle.

σ2 =
∑6400

i=1 (Nodes.celli −Mean)2, celli != obstacle .

As Fig. 12 (d), (e), (f) explicate, the variance in density of
exploration exhibits a downtrend with increase in number of
RRTs, indicating increased uniformity. The K-distributed RRT,
with increase in values of K, has the least uniformly explored
map. The variable K directs this observation. A higher K value
will have less scheduling, as shown in Fig. 12 (a), (b), (c) but
the RRT will be forced to latch on to an outdated nearest neigh-
bour from the global map, leading to a localised exploration by
that RRT. Distributed and combinatorial architecture, however,
transfer each and every node (K = 1). With the global explored
map updated with the latest data, it allows the RRTs to latch
on to the correct nearest neighbour, resulting in an exploration
that is more uniform. The same is observed in Fig. 12 (d), (e),
(f), with combinatorial and distributed architecture showcasing
nearly identical, minimum variance in density.

C. Power consumption by equivalent hardware

Fig. 13 presents the dynamic power consumption by the
FPGA realised hardware implementations of the 3 architec-
tures. For small to large scale(N = 1, 4, 16, 64) parallelization,

Fig. 13. Dynamic power consumption (Quiescent level = 3.36 W)

the 3 architectures consume nearly identical power levels.
But with transition into ultra scale(N = 256) parallelization
levels, the power consumption levels of the combinatorial
architecture rise relatively faster compared to the other two
architectures. This behaviour is attributed to the increase in
size and switching activity of the combinatorial circuit with
increase in number of RRTs. The architectural implementation
of distributed and K-distributed architectures does not grow in
size and switching activity because of its tolerance towards
inter-RRT scheduling, leading to lower power consumption
levels.

To summarise, the combinatorial architecture’s ability to
account for all the 2N cases with no inter-RRT scheduling
makes it the fastest architecture for medium to ultra scale
parallelization. The architecture was designed to transfer every
node with K = 1 that results in homogeneous exploration of
maps, including maps with tight, constrained pathways like
Map 1 and Map 2. The trade off for relatively accelerated,
homogeneous exploration is the higher power consumption
levels due to the combinatorial accounting of the 2N cases.

V. CONCLUSIONS

Implementation of a software algorithm on an FPGA
enables fundamental hardware level optimizations that offers
real time performance and economical power consumption
levels. This paper proffered the combinatorial architecture that
benefits from the inherent parallel abilities of the FPGA.
Quantitative benchmarking of this architecture on maps with
tight geometric constraints exhibited the architecture’s ability
of fast and uniform exploration. The trade off was the higher
power consumption levels with the transition to the domain of
ultra scale parallelization. These quantitative results were also
supplemented with qualitative reasoning. In conclusion, this
architecture presents a very favourable combination of speed,
uniformity and power consumption in the domain of medium
to large scale parallelization.

As part of our future work, we would like to map the
optimal number of RRTs required to the features of the map.
This would allow us to maintain decent levels of speed and
uniformity while keeping the power consumption levels low.
Owing to the complex challenges involved in implementing
a system on an FPGA, we would like to extend our im-
plementation to robots with higher degrees of freedom. We

are confident that the architecture will scale very well with
increase in robot’s kinematic complexity.

REFERENCES

[1] Jan Fischer, Alexander Ruppel, Florian Weisshardt, and Alexander
Verl. A rotation invariant feature descriptor o-daisy and its fpga
implementation. In Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on, pages 2365–2370. IEEE, 2011.

[2] Jan Svab, Tomas Krajnik, Jan Faigl, and Libor Preucil. Fpga based
speeded up robust features. In Technologies for Practical Robot
Applications, 2009. TePRA 2009. IEEE International Conference on,
pages 35–41. IEEE, 2009.

[3] Jason Oberg, Ken Eguro, Ray Bittner, and Alessandro Forin. Random
decision tree body part recognition using fpgas. In Field Programmable
Logic and Applications (FPL), 2012 22nd International Conference on,
pages 330–337. IEEE, 2012.

[4] Roopak Dubey, Neeraj Pradhan, K Madhava Krishna, and Shubhajit Roy
Chowdhury. Field programmable gate array (fpga) based collision
avoidance using acceleration velocity obstacles. In Robotics and
Biomimetics (ROBIO), 2012 IEEE International Conference on, pages
2333–2338. IEEE, 2012.

[5] Steven M LaValle and James J Kuffner Jr. Rapidly-exploring random
trees: Progress and prospects. 2000.

[6] Steven M LaValle and James J Kuffner. Randomized kinodynamic
planning. The International Journal of Robotics Research, 20(5):378–
400, 2001.

[7] Juan Cortés and Thierry Siméon. Sampling-based motion planning
under kinematic loop-closure constraints. In Algorithmic Foundations
of Robotics VI, pages 75–90. Springer, 2005.

[8] Alexander Shkolnik, Matthew Walter, and Russ Tedrake. Reachability-
guided sampling for planning under differential constraints. In Robotics
and Automation, 2009. ICRA’09. IEEE International Conference on,
pages 2859–2865. IEEE, 2009.

[9] Russ Tedrake. Lqr-trees: Feedback motion planning on sparse random-
ized trees. 2009.

[10] Léonard Jaillet, Anna Yershova, Steven M La Valle, and Thierry
Siméon. Adaptive tuning of the sampling domain for dynamic-domain
rrts. In Intelligent Robots and Systems, 2005.(IROS 2005). 2005
IEEE/RSJ International Conference on, pages 2851–2856. IEEE, 2005.

[11] Mikael Svenstrup, Thomas Bak, and Hans Jørgen Andersen. Minimising
computational complexity of the rrt algorithm a practical approach. In
Robotics and Automation (ICRA), 2011 IEEE International Conference
on, pages 5602–5607. IEEE, 2011.

[12] Didier Devaurs, Thierry Siméon, and Juan Cortés. Parallelizing rrt on
distributed-memory architectures. In Proc. IEEE ICRA’11, pages pp–
2261, 2011.

[13] Nick Stradford, Sam Ade Jacobs, and Nancy M Amato. Scalable parallel
rrt method for motion planning.

[14] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis.
Introduction to parallel computing: design and analysis of algorithms.
Benjamin/Cummings Publishing Company Redwood City, CA, 1994.

