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Abstract—
We can improve the inference throughput of deep con-

volutional networks mapped to FPGA-optimized systolic ar-
rays, at the expense of latency, with array partitioning
and layer pipelining. Modern convolutional networks have a
growing number of layers, such as the 58 separable layer
GoogleNetv1, with varying compute, storage, and data move-
ment requirements. At the same time, modern high-end FPGAs,
such as the Xilinx UltraScale+ VU37P, can accommodate high-
performance, 650 MHz, layouts of large 1920⇥9 systolic arrays.
These can stay underutilized if the network layer requirements
do not match the array size. We formulate an optimization
problem, for improving array utilization, and boosting infer-
ence throughput, that determines how to partition the systolic
array on the FPGA chip, and how to slice the network layers
across the array partitions in a pipelined fashion. We adopt a
two phase approach where (1) we identify layer assignment for
each partition using an Evolutionary Strategy, and (2) we adopt
a greedy-but-optimal approach for resource allocation to select
the systolic array dimensions of each partition. When compared
to state-of-the-art systolic architectures, we show throughput
improvements in the range 1.3-1.5⇥ and latency improvements
in the range 0.5-1.8⇥ against Multi-CLP and Xilinx SuperTile.

I. INTRODUCTION

Systolic arrays [1] organize hardware resources in a
repeating grid of simple compute elements wired together
using nearest-neighbour interconnect. The key idea is to
inject data into the array in rhythmic fashion (to a systolic
beat) and exploit data reuse through the nearest-neighbour
connectivity. They can be configured to solve a variety of
problems including matrix operations that are a common
kernel in machine learning workloads. The hardware real-
ization of these arrays is layout friendly and modern chips
such as the Google TPU [2] have adopted this design style.

FPGA architectures are well-suited for efficient realization
of 2D systolic arrays due to their regular arrangement of
resources. Hard resources such as the Xilinx DSP48 math
blocks, BRAM18 and URAM288 on-chip memories are laid
out in a columnar fashion throughout the chip. Furthermore,
Xilinx UltraScale+ devices naturally support systolic data
movement using hard interconnect cascades along these
columns. With careful floorplanning, it is easily possible to
get 650 MHz+ operation [3], [4] on the Xilinx UltraScale+
VU9P–37P device(s).

A key limitation of mapping convolutional neural net-
works to systolic arrays is the threat of low array utilization.
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Figure 1: Illustrating the partitioning problem when
mapping a deep neural network to a large systolic array.
Here, we see the work across different layers of the
GoogleNetv1 mapped to a 1920⇥9 array on a Xilinx
VU37P FPGA and split into three partitions. We need to
choose split points a and b to compute layer assignment
as well as a0 and b0 to distribute systolic array resources.

In a deep neural network, each layer has its own unique
computational requirements and may be unable to use the
full capacity the systolic array. As seen in Figure 1, the
number of operations in each layer across the 58-layer
GoogleNetv1 topology varies quite dramatically. This
mismatch can be remedied by tailoring the array size [5],
[6] uniquely to each layer within the constraints of total chip
capacity. Fortunately, the FPGA fabric naturally supports
configuration opportunities that lets us partition or fracture
the array as desired for each machine learning workload.

To use partitioned systolic arrays effectively, we need to
split layers of the deep neural network across different sub-
arrays on the device. The number of layers assigned to a
partition and the size of the partition must both be chosen
for maximizing utilization of hardware. This is a non-trivial
problem due to the large number of layers in modern neural
networks, and the large systolic array sizes that are possible
on modern FPGAs. The solutions proposed in Multi-CLP
design [5], [6] allow layers to be partitioned in an arbitrary
manner complicating inter-layer data movement as well as
creating a larger design space than necessary. The Xilinx
SuperTile [3], [7] decomposes layers in contiguous subsets



that capture inter-layer traffic within a partition and reduces
the set of choices that need to made to a tractable level. Our
approach follows the Xilinx SuperTile design but simplifies
it further to only require 1D partitioning of the systolic
array. We can visualize this task of splitting the layers
and the physical systolic array resources in Figure 1. For
instance, we consider the case of contiguous partitioning on
GoogleNetv1 with 58 layers mapped to a Xilinx VU37P
with a 1920⇥9 array. If we partition the network into K
contiguous subsets, we have 57⇥56⇥55⇥ . . . (57�K�1)
possible partitions. Similarly, we can split a 1920⇥9 array
along the first dimension (1D partition) into K contiguous
sub-arrays in (1920�K � 1)⇥ (1920�K � 2)⇥ (1920�
K�3)⇥ . . . (1920�2K�1) possible ways. Thus, the total
space of choices is the product of the two terms which can
quickly become infeasible to naı̈ve brute-force search.

In this paper, we develop a fast optimization algorithm to
contiguously partition the neural network across a systolic
array to improve array utilization. We generalize the problem
to arbitrary number of partitions, target a broader set of
neural networks, and do so using evolutionary algorithms
to guide the search. We use three strategies, two of which
are inspired by evolutionary algorithms, to attack the par-
titioning problem: CMA-ES (Covariance Matrix Adaptation
Evolution Strategy), GA (Genetic Algorithm), and Hyper-
opt [8] (Hyper-parameter optimization). These algorithms
use an iterative approach for discovering solutions and are
able to generate high-quality partitions in a few seconds.

The key contributions of this paper include:
• Formulation of an optimization problem for partition-

ing FPGA-optimized systolic arrays to improve their
utilization when mapping deep convolutional networks.

• Development of a two phase approach to compute (1)
layer assignment using a search process, and (2) re-
source allocation using a greedy-but-optimal approach.
This formulation makes the problem tractable.

• Use of SCALEsim systolic array modeling framework
to generate a cycle-accurate performance model for use
with the optimization flow.

• Comparison of two evolutionary strategies CMA-ES
and GA with an off-the-shelf parameter tuning frame-
work Hyperopt for solving the optimization problem.

• Quantification of the throughput-latency trade-offs, op-
timization runtime, for benchmarks derived from the
MLPerf [9] dataset and other ConvNets.

II. BACKGROUND

We first describe how our systolic arrays are mapped to
an FPGA and then discuss evolutionary algorithms.

A. Systolic Arrays for CNNs on FPGAs

Systolic data movement is crucial for exploiting abundant
data reuse opportunities in deep neural networks. A modern
Xilinx UltraScale+ VU37P FPGA supports 960 URAM
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Figure 2: Systolic building blocks for Convolution and
Matrix-Vector multiplication that exploit nearest neighbour
data movement in weight-stationary and input-stationary
manner. A cascade of 9 DSP48 blocks is the minimum
repeating unit that is replicated across the chip.

blocks, 9024 DSP48 slices, and 4032 RAMB18 blocks. We
can build a systolic overlay of size 1920⇥9 where each row
is a chain of 9 DSP48 blocks. We use the design from [4]
in this work, where you can find a detailed discussion of the
FPGA-optimized systolic array implementation. The length-
9 chain is chosen to fit a 3⇥3 convolution while using the
DSP48 cascades in the computation core. In this architecture,
a pair of URAMs supplies data to 2⇥9 array of systolic
multiply-add blocks mapped to SIMD=2 DSP48 units. By
carefully staging data through the URAMs, BRAMs, and
internal DSP A + B registers, we can orchestrate systolic
behavior from the components. For matrix-vector multiplica-
tion, we are performance limited by the memory bandwidth
of the URAM blocks. This halves the effective array size
available for those layers. As seen in Figure 2, the DSP-to-
DSP links form one (horizontal) dimension of the systolic
array for both convolution and matrix-vector processing.
The 72b URAM cascades provide an equivalent systolic
lane support in the vertical dimension. For matrix-vector
processing, we only need to redistribute the result vector in a
systolic fashion for the next layer. For the large VU37P, the
URAM capacity is large enough to hold all the weights and
worst-case activations for networks like GoogleNetv1.
For those designs where that is not possible, the 32⇥ 256b
AXI connections to a multi-ported on-chip HBM memory
bank permits rapid loading of the URAM memory structures.

B. Neuro Evolution

The Neuro-Evolution (NE) ethos proposes the use of
evolution-based algorithms to solve difficult optimization
problems. In an NE algorithm, candidate solutions are re-
fined through a series of evolution step (generations) that
teach the algorithm how to nurture desired characteristics.
In one step, a set of mutations are performed on to produce
an ensemble of potential solution models. Each of these
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potential model is then evaluated for fitness specific to the
optimization task, followed by a fitness-ranked selection and
evolution of best-performing models into the parent set for
the next generation of evolution. Reinforcement Learning
(RL) [10] and Neural Network topology search for classifi-
cation problems [11] have seen successful implementations
of NE in recent works. NE is particularly effective for
applications where computation of gradients are intractable.
The efficacy of NE techniques is mainly due to the evolu-
tion mechanism that reliably discovers and nurtures desired
model characteristics and suppressing detrimental ones. We
discuss two broad categories of NE-based algorithms:

Evolution Strategies (ES): Evolution Strategies [12],
[13] discover problem structure by representing the can-
didate solution as a distribution of random variables. At
every generation, candidate solutions are generated using
this distribution and evaluated for their fitness on the task
being learned. The top performing candidates are selected
via deterministic survivor selection and this is used to evolve
the distribution representative of the solution space.

Genetic Algorithms (GA): GAs [14]–[16] aims to ac-
curately mimic biological evolution by mapping the space
of problem variables to a genome. Through the course of the
evolution cycle, GAs use mutation and crossover of genomes
to produce a set of competing and diverse candidate models.
Each phase of mutation-crossover is seeded from the best
performing candidates from previous generations.

III. PARTITIONING ALGORITHM

First, we motivate the need for partitioning systolic arrays
for deep networks with an example that demonstrates the
scale of underutilization possible in an array. Next, we
formalize the objective of our partitioning algorithm and
illustrate the working of one algorithm on a simple example.

A. Motivation

Large, monolithic systolic arrays of dimensions 1920⇥9
are now easily realizable on modern Xilinx UltraScale+
FPGAs. When mapping layers of a deep network to such an
array, performance if often limited by the amount of paral-
lelism in that layer and its memory bandwidth requirements.
To concretely observe these trends, in Figure 3, we show
cycle count and array utilization for the Conv1 layer of
GoogleNetv1 neural network when the systolic array size
is varied from 1⇥9 to 1920⇥9. As expected, when the array
size increases, we see an improvement (reduction) in cycle
count required to process the array. However, if we provide
resources beyond a certain limit, 60⇥ 9 in the example, there
is negligible improvement in performance and most of the
array remains idle. If layers of a deep network are serially
processed and the entire systolic array is made available to
each layer, we will observe massive underutilization and loss
in throughput. Instead, we can repurpose the idle portion of
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Figure 3: Cycle count and array utilization scaling trends
for GoogleNetv1 Conv1 layer. As we scale beyond
60⇥9 array size, the array idle time grows beyond 50%
fast approaching 90% at full system size of 960⇥9. The
noise in array utilization is due to the quantization effect
of managing reuse.

the array to process other layers of the network in a pipelined
fashion [3], [5]–[7].

Layer pipelining, like classic datapath pipelining, allows
a design to start computation of a next input image on
an early layer of the network, while a previous image is
still being processed in downstream layers of the network.
While this transformation may compromise latency, it will
let hardware resource stay busy with useful work, thereby
improving inference throughput. In this paper, we formulate
the partitioning problem in more general terms that (1) works
for any network and any systolic array size, (2) provides
finer-grained partitioning support down to individual row
granularity, and (3) integrates with a fast neuroevolution
algorithm to discover high quality partitions.

B. Optimization Formulation

The objective of our mapping algorithm is to assign
contiguous non-overlapping subsets of neural network layers
to physically-disjoint 1D partition of the systolic array. A
brute force search of possible solutions is intractable for
deep networks and large array sizes. For an N -layer network
mapped to a 1920⇥9 array split into K partitions, we can
formalize the objective function we wish to minimize as
shown below:

min
l,p

0

@max
x

0

@
X

y2l[x]

cycles[y][p[x]]

1

A

1

A (1)

subject to
K�1X

x=0

p[x] = 1920 (2)

K�1X

x=0

l[x] = N (3)

8x, p[x] � 1 (4)
8x, l[x] � 1 (5)
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In Equation 1,
• x is the partition index,
• p[x] is the size of systolic array for that partition,
• l[x] is the set of layers mapped to the partition, and
• cycles[][] is the timing model for the systolic array

implementing a particular neural network topology.
To solve this equation, we first construct an empirical timing
model captured by the 2D array cycles[][] for each layer of a
neural network. This array is indexed first by the layer index
y of the layer mapped to all possible systolic array sizes
from 1⇥9–1920⇥9. This array is built from a cycle-accurate
simulation of the RTL design and the DRAM interface using
the SCALEsim [17] modeling framework. For a partition x,
we must add up the cycles needed per layer mapped to that
partition (array l[x]). This is because within a partition the
layers are executed sequentially. Across all partitions, the
computation is pipelined, which means the overall system
throughput is defined by its slowest partition. Thus, we can
compute a max of the cycles required by each partition and
this figure is the object of optimization minimization. This
measurement is analogous to critical path analysis in deter-
mining clock frequency of RTL designs. Our optimization
algorithm will aim to discover a layer assignment l[x] and
associated resource allocation p[x] to minimize the worst-
case cycle count across all partitions. This is captured by
the objective function in Equation 1. A legal solution must
ensure non-empty layer assignments (Equation 4) and non-
empty partitions (Equation 5). Choosing the values of l[x]
determines the values a and b in Figure 1 while selecting
p[x] implies determination of a0 and b0 in the same example.
Unlike Multi-CLP [5], we do not constrain weights and
activations to fit within on-chip capacity as we rely on our
optimizer to discover the best strategy.

C. Search Algorithm Design

The key idea we use to constrain the search problem is
to split the process into two steps (1) layer assignment, and
(2) resource allocation. This allows the search complexity of
layer assignment to be decoupled from resource allocation.
Furthermore, this allows the resource allocation step to
be computable in polynomial time. The layer assignment
process is handled by an intelligent search algorithm (CMA-
ES, GA, of Hyperopt). Once we know which set of layers are
assigned to which partition l[x], we can determine resource
allocation p[x] in a greedy, optimal manner. This is possible
because (1) we already know that the cycle count scaling
trends for each layer in the cycles array are monotonically
decreasing as a function of systolic array size, and (2) we
are only interesting in minimizing the maximum cycle count
across all partitions. The complete process is illustrated in
Algorithm 1.

We illustrate the operation of this search algorithm using
Figure 4 for GoogleNetv1 mapped to a 1920⇥9 array
(max) with 5 partitions. As the evolutionary algorithm

Algorithm 1: Simplified View of the layer assign-
ment and resource allocation algorithm to compute
p[x] in the inner loop while exploring layer assign-
ment l[x] using intelligent search for the outer loop.

while !terminate do
l[x] = New Candidate(); iteration++;
for x < K do

// Start with 1⇥9 arrays in each partition
p[x] = 1
// Compute cycles spent in partition x
cyc[x] =

P
y2l[x] cycles[y][p[x]]

// Loop until resources R still available
R = 1920-K;
while R > 0 do

// Find the bottleneck partition
x0 = maxx(cyc[x])
// Increase allocation to bottleneck partition
p[x0]++; R=R-1;
// Recalculate cycles for partition x0

cyc[x0] =
P

y2l[x0] cycles[y][p[x
0]]

cost = minl,p maxx
P

y2l[x] cycles[y][p[x]]
// Provide training data to search algorithm
Train(l[x],cost)

proceeds, the solutions start to change before settling down
into stable values after ⇡6-7 iterations. In each iteration,
the mutation step generates multiple candidate solutions,
evaluates their cost functions, and learns which combinations
work well and which fail. This results in a steady improve-
ment in resulting throughput at the expense of increased
latency. At steady state, the first partition (at the bottom
of the stacked bar chart) captures the first few layers of
GoogleNetv1 while getting almost 50% of the resources.
A cursory glance at the operation count distribution from
Figure 1 confirms this is an intuitively correct solution. Other
workloads like AlphaGoZero have stubborn layers with
limited parallelism, and require introspection into the par-
allelizability, and memory capacity + bandwidth constraints
of the layer to correctly determine the layer partition and
resource assignments.

IV. EXPERIMENTAL SETUP

We show a high-level diagram of our toolflow in Figure 5.
We do a one-time construction a timing (performance) model
of the systolic array of specific dimensions for a particular
neural network topology by sweeping each layer of the
network across various systolic array sizes. We then run an
optimization loop that first determines the layer assignments
using an Evolutionary Strategy while deciding resource
allocation using a greedy-but-optimal approach.
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Figure 4: Evolution of layer assignment l[x] and resource allocation p[x] for GoogleNetv1 with 5 partitions mapped to
a Xilinx UltraScale+ VU37P FPGA with a 1920⇥9 array (max). Iteration refers to the outer while loop in Algorithm 1.
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Figure 5: High-level diagram of the partitioning toolflow.
SCALEsim builds the performance model cycle[][]. The
evolutionary + greedy algorithm finds layer assignment
l[x] and resource allocation p[x] for a partition size K.

A. FPGA Design

We construct the FPGA-optimized systolic array hardware
using direct instantiation of Xilinx hard blocks such as
DSP48, RAMB18, and URAM288. We design state machine
controllers to manage data movement between the various
resources and provide partitioning support by gating data
movement in the URAM and BRAM chains. We floorplan
the design using Xilinx XDC constraints and implement it
on a Xilinx UltraScale+ VU37P FPGA. We use the design
from [4] that is able to fit a systolic array of size 1920⇥9 in
this chip and operate it at a high 650 MHz clock frequency
limited solely by the URAM maximum operating frequency.
The specific cycle counts needed by our hardware array are
extracted from RTL simulation of the building blocks and
provided to the performance modeling tool for allow large-
scale experiments on various topologies and system sizes
that would otherwise be too slow for RTL simulations.

B. Performance Modeling

To realize our optimization algorithm, we need to generate
the cycle[][] timing model for each convolutional network
topology at various systolic array sizes. We compute the
cycle counts needed by each layer of the network topology
individually by exploring all design combinations between
1⇥9 and 1920⇥9 sizes in steps of one. We use the
SCALEsim [17] systolic array modeling framework that sup-

ports the flexibility of evaluating different styles of dataflow
as appropriate for convolution and matrix-vector processing
stages. We configure SCALEsim to account for memory
capacity limits of the URAM as a second stage of memory
in the architecture. We supply data to the URAMs from the
multi-ported high-bandwidth HBM memory and capture the
correctly, as smaller array sizes only have access to a propor-
tionally reduced number of URAM resources which affects
capacity and increases pressure on the DRAM interfaces.
Thus, smaller systolic arrays require higher cycle counts
due to combination of two factors including fewer resources
for exploiting parallelism and reduced memory bandwidth
to supply data. We use benchmarks from MLPerf [9]1 and
other ConvNets from Multi-CLP [5].

C. Evolutionary Algorithms

We compare the effectiveness of two kinds of evolution-
ary algorithms in this paper that optimize the throughput-
oriented goodness metric in Equation 1 via Algorithm 1.

CMA-ES: The first style is CMA-ES (Covariance Matrix
Adaptation Evolution Strategy) where the unknown real-
valued variables are modeled as Gaussian distributions with
a mean and variance. An evolution step involves generating
a population of solution candidates and evaluating their cost
functions. At the end of an evolution step, the top 25%
of the best solutions are retained and used to update the
mean and variance of each unknown. In our implementation,
each variable represents a percentage of layers included in
that partition. For example, an array of [0.2, 0.3, 0.5] can be
decoded as have the first 20% of layers in the first partition,
the next 30% layers in the second and the remaining 50%
layers in the final partition. We initialize the system in either
(a) all-zero assignment, or (b) valid legal assignment, for
l[x]. We reject illegal assignments with high penalty. An
illegal assignment happens when either l[x]=0 for any x,
l[xa] < l[xb] for xa > xb. These two cases capture the
condition where there is an empty partition or the layer
assignment starts at a layer index larger than where it ends
(an impossibility).

1Result not verified by MLPerf.
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Figure 6: Understanding the impact of partitioning on Throughput and Latency across MLPerf and ConvNet workloads.

GA: We also evaluate the effectiveness of Genetic Al-
gorithm approach that naturally supports integer solutions.
Unlike CMA-ES, GAs can directly manipulate integer un-
knowns. In our implementation, we use a permutation GA
approach that select K-1 partition split points from a random
permutation of vector [1, 2, . . . , N � 1] where N=number
of layers and K=number of partitions. For example, with
N=6 and K=3, we select 2 split-points from the first two
locations of the vector and ignore the rest. If the gene has
values [3, 1, 4, 5, 2], we will split after first and third layers
to generate three partitions. An advantage of this problem
formulation is that it is guaranteed any off-spring generated
using mutation will be a valid solution.

Hyperopt: Finally, we investigate a flavour of Sequential
model-based Bayesian optimization using Hyperopt [18].
Hyperopt is able to handle integer-valued search variables
with ease. As a result, in similar style to GA, we are
able to define a configuration space assignment to directly
optimise for l[x] without numerical reshaping. We configure
Hyperopt to use the Tree-of-Parzen-Estimators

(TPE) algorithm [19] to optimise the search space.

V. EVALUATION

We now investigate the use of our partitioning algorithm
on the resulting performance improvements on the systolic
array. We measure inference throughput (img/s), end-to-end
latency as a function of various experiment parameters such
as number of partitions K, choice of optimization algorithm,
and optimization time. We also examine the quality-time
tradeoffs in choice of evolutionary algorithms we use.

A. Throughput and Latency Tradeoffs

In Figure 6, we explore the effect of varying partition
sizes on the resulting inference throughput and latency of
the neural network. We compute throughput gain and la-
tency penalty compared to a non-partitioned baseline where
the entire array is allocated to each layer of the neural
network. As we increase the number of partitions of the
network, we note an improvement in throughput due to an

associated increase in systolic array utilization. Beyond a
certain partition count, we no longer observe any increase
in throughput due to saturation of compute resources and
memory bandwidth. The exact threshold where this happens
varies with the workload. For instance, for large networks
like GoogleNetv1, we observe throughput wins of ⇡10⇥
at 15 partitions at the expense of 1.3⇥ increase in inference
latency. Other networks like FasterRCNN saturates earlier
at around 6–7 partitions and delivers proportional throughput
improvements of ⇡6⇥. In the extreme end, shallow networks
with 5–10 layers like AlphaGoZero and AlexNet only
show limited throughput improvements of 2–3⇥ and only
scale to limited partition counts.

We can also visualize the relative effects of changing
partition size on both throughput and latency together as
shown in Figure 6c. We clearly observe the almost linear re-
lationship between throughput improvements and increase in
latency of inference. Bulk of the explored design configura-
tions only slow down inference by 2⇥ but are able to deliver
as much as 10⇥ throughput improvements. Higher latency
penalties as seen previously in Figure 6, happen when the
design configurations are overpartitioning the systolic array
that are dominated by strictly superior solutions.

Finally, in Figure 7, we report a Figure of Merit (FoM)
score which is computed as the ratio of Throughput gain
to Latency loss for each workload. As we increase partition
count, we have seen that throughput gains increase at the
expense of latency losses. The ratio captures a sweet spot
that can be achieved where we achieve substantial improve-
ments in throughput without sacrificing too much latency.
The smallest partition size where this can be done is then
reported as the ideal partition size for that workload. For
benchmarks like GoogleNetv1, and Resnet50v1, we
can scale to 9–10 partitions at peak FoM value. For medium-
sized benchmarks like FasterRCNN, SqueezeNet, and
MobileNetv1, we can scale to 6–8 partitions, while
shallow networks like AlphaGoZero, YOLO_Tiny and
AlexNet, scale to 3-4 partitions.
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Figure 8: Improvement in Throughput for GoogleNetv1
for 10 partitions across iterations of Evolutionary Strategy.

B. Understanding Evolution

We now look how the Evolutionary Strategy (CMA-
ES) helps navigate us towards the solution in Figure 8
for GoogleNetv1 with 10 partitions. Here, we see that
the partition solutions evolve towards better throughput and
ultimately saturate at a speedup of 8⇥ after ⇡30 iterations.
Each iteration operates on a population size of 100 muta-
tions to determine the direction of evolution. The extent
of solution quality also improves with the evolutionary
algorithm iterations. The colors indicate the evolutionary
process as the system converges towards the best partitioned
solution. We initialize our system with an illegal all-zero
solution vector for network layers and partition sizes and
reject those combinations with high penalty. After the first
⇡25 iterations, the optimizer has learned enough about the
solution space to no longer generate illegal candidates as we
see with the gain=0 cluster at the bottom of the plot.

We can also track the learning process in CMA-ES by in-
specting Figure 9 (valid solutions) and Figure 10 (runtime).
In Figure 9, we see the effect of zero start (illegal solution)
slows down convergence by a small amount 1–2 evolutionary
steps. In each step, we explore 100 mutations, and some of
those mutations are illegal. With a legal starting condition,
the different networks are able to observe exploration of
80% valid solutions between 3–4 iterations while a zero
start delays this to 5–6 iterations. Both cases are ultimately

2 4 6 8 10
0
20
40
60
80
100

Evolution Step

Va
lid

So
lu

tio
ns

(%
)

(a) Zero Start

2 4 6 8 10
0
20
40
60
80
100

Evolution Step

FasterRCNN
MobileNetv1
GoogleNet

Alexnet
YOLO Tiny
AlphaGoZero

NCF
Resnet50v1
SqueezeNet

(b) Legal Start

Figure 9: Tracking the valid solutions percentage as a
function of evolution step across various workloads for
5 partitions.
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Figure 10: Improvement in solution quality as a function
of time for various networks with 5 partitions.

able to discover the best partitioning strategy and deliver
identical throughput and latency wins. When considering
runtime required in Figure 10, we note that the our evo-
lutionary strategy completes the search in a few seconds of
exploration! This illustrates the speed and robustness of the
evolutionary strategy to absence of domain knowledge in
seeding the search process.

Finally, in Figure 11, we show the differences in runtime
for a select few benchmarks across CMA-ES, GA, and Hy-
peropt search algorithms for 8-partition problems. Hyperopt
runs quickly but typically settles for a lower quality result
as it is trapped in a local minima. GA generates various
permutations, slowing it down, and also resulting in a lower
quality of result. CMA-ES shines across the board with a
higher quality solution in all cases. For certain workloads
like NCF (and AlexNet, AlphaGoZero now shown) the
design space is small enough that the search completes in
the first iteration itself.

C. Comparison against state-of-the-art

Finally, in Table I, we position our work against previ-
ously best-published performance data for Multi-CLP [5]
and Xilinx SuperTile [3]. The AlexNet and SqueezeNet
topologies are realized in 32b and 16b floating point preci-
sion respectively on the Multi-CLP architecture which can
constrain the largest systolic array you can fit on the device.
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Table I: Comparing the throughput and latency of state-of-the-art FPGA systolic arrays like Multi-CLP and SuperTile.

Topology FPGA K Array Size (⇥9 for This paper design) Throughput (img/s) Latency (ms)
AlexNet [5] 485T 4 [2x64 1x96 3x24 8x19] 61 62.3
AlexNet [This Paper] 485T 3 [10 30 10] 90 (1.47⇥ ") 42.7 (1.45⇥ #)
AlexNet [5] 690T 6 [1x64 1x96 2x64 1x48 1x48 3x64] 80 70.1
AlexNet [This Paper] 690T 4 [11 42 9 2] 102 (1.27⇥ ") 37.8 (1.85⇥ #)
SqueezeNet [5] 485T 6 [6x16 3x64 4x64 8x64 8x128 16x10] 913 6.52
SqueezeNet [This Paper] 485T 6 [54 32 43 24 64 32] 1166 (1.27⇥ ") 5.12 (1.27⇥ #)
SqueezeNet [5] 690T 6 [8x16 3x64 11x32 8x64 5x256 16x26] 1167 5
SqueezeNet [This Paper] 690T 17 [96 3 8 4 16 43 3 11 20 7 16 6 4 30 3 6 34] 1579 (1.35⇥ ") 10.62 (2.1⇥ ")
SqueezeNet [This Paper] 690T 8 [96 13 13 43 32 24 43 46] 1429 (1.22⇥ ") 5.57 (1.14⇥ ")
GoogleNetv1 [3] VU9P 12 [21x8 32x16 96x16 8x1] ⇥ 3 3046 3.9
GoogleNetv1 [This Paper] VU37P 14 [32 64 22 15 32 27 16 9 19 24 20 16 18 6] ⇥ 6 5976 (1.9⇥ ") 14.1 (3.6⇥ ")
GoogleNetv1 [This Paper] VU37P 15 [64 7 192 64 43 96 48 56 38 43 75 80 64 64 26] ⇥ 2 4312 (1.4⇥ ") 7.26 (2⇥ ")
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Figure 11: Exploring Throughput Gain trends for various
parameter tuning algorithm for 8 partitions.

To ensure fair comparison, we reduce the size of our array
to match their design specification. For the Xilinx SuperTile
design, performance is reported on the Xilinx UltraScale+
VU3P which approximately accommodates an array of size
320⇥9. From the table, we note that we outperform Multi-
CLP by 1.3–1.5⇥ in terms of throughput and by 1.4–4.6⇥ in
terms of latency, while beating the throughput of SuperTile
by 1.5⇥ but have a 2⇥ higher latency due to throughput-
maximizing 15 partition solution (See Figure 7 to balanced
designs). These solutions are possible due to the ability to
explore a larger search space of possible solutions.

VI. RELATED WORK

The Multi-CLP architecture presented in [5], [6] has
explored the problem of partitioning FPGA resources across
layers of a neural network. In that design, the problem
has been made more complicated than strictly necessary by
allowing (1) per-partition sizing of systolic array dimensions,

and (2) arbitrary layer assignment without contiguity. The
formulation faces from following challenges:
• Resource and runtime overheads of inter-partition com-

munication. As layer sequence is not localized to a parti-
tion, we must explicitly move intermediate results which
will cost us time (which may be partially overlapped) and
FPGA resources.

• FPGA layout challenges for fitting multiple partitions
with arbitrary sizes that do not compose in a 2D rectan-
gular fashion. This will impact implementation frequency
of the design.

• Discarded solutions due to on-chip memory capacity
constraints for determining feasibility of layer assignment
to partition. This may prematurely eliminate solutions that
may have been adequate with some time overhead of
fetching excess content from DRAM.
The Xilinx SuperTile [3] design offers a one-off multi-

processor solution for GoogleNetv1 mapped to four
custom-sized systolic arrays. The layer assignment and par-
tition sizing is done for this problem alone and no general
solution is provided for arbitrary networks or chip capacities.
Despite this limitation, we found SuperTile to be quite
competitive with our eventual solution discussed in Table I.

VII. CONCLUSIONS

In this paper, we show how to boost inference throughput
of deep networks mapped to FPGA-optimized systolic ar-
rays. We are able to outperform state-of-the-art Multi-CLP
architecture by 1.3–1.5⇥ on throughput and 0.5–1.8⇥ on
latency, provide 1.4⇥ throughput over Xilinx SuperTile at
the cost of 2⇥ higher latency while consuming identical
systolic resources. We demonstrate the use of an evolution-
ary algorithm CMA-ES to tackle a two-phase formulation of
the partitioning problem. We offloads 1D layer assignment
in the first phase to CMA-ES while using a greedy-but-
optimal resource assignment strategy in the second phase.
We observe that CMA-ES delivers higher quality solutions
and also successfully bootstraps from a zero start requiring
no a priori knowledge of the design space.
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Source Code: https://git.uwaterloo.ca/watcag-public/
fpga-syspart
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