
DarwiNN: Efficient Distributed Neuroevolution under
Communication Constraints

Gurshaant Singh Malik
University of Waterloo

Lucian Petrica
Xilinx Research Labs
lucianp@xilinx.com

Nachiket Kapre
University of Waterloo

Michaela Blott
Xilinx Research Labs

ABSTRACT
Neuroevolution (NE), defined as the application of evolution-based
training methods to Deep Neural Networks (DNNs), has recently
demonstrated encouraging results on a variety of learning tasks.
NE is highly parallel and relies on DNN inference as its main
computational kernel and therefore can potentially leverage large-
scale distributed inference-specific hardware infrastructure in the
cloud or edge. We introduce chromosome updates (CU), a novel
communication-optimized method for distributing NE computa-
tion, and DarwiNN, an open-source, GPU-accelerated distributed
NE toolbox based on PyTorch, which implements CU and other
algorithms for distributing NE.

CCS CONCEPTS
• Computing methodologies→ Distributed algorithms; Bio-
inspired approaches;

KEYWORDS
Neuroevolution, Distributed Computing, PyTorch, GPU

ACM Reference Format:
Gurshaant Singh Malik, Lucian Petrica, Nachiket Kapre, and Michaela Blott.
2020. DarwiNN: Efficient Distributed Neuroevolution under Communication
Constraints. InGenetic and Evolutionary Computation Conference Companion
(GECCO ’20 Companion), July 8–12, 2020, Cancún, Mexico. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3377929.3390007

1 INTRODUCTION
Neuro-Evolution (NE) is an evolution-based alternative to backprop-
agation for training the weights of deep neural networks (DNNs).
NE has been applied successfully to various problems in reinforce-
ment learning (RL) [2], but also to more traditional areas of su-
pervised deep learning such as image classification [1, 3]. As NE
methods become better understood and deliver useful results in
deep learning, their computational efficiency becomes more im-
portant. In this work, we present Chromosome Updates (CU), a
communication efficient algorithm for distributing NE computation
across a cluster of computers with optimal scalability. Furthermore,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7127-8/20/07.
https://doi.org/10.1145/3377929.3390007

we present DarwiNN1, an open-source, GPU-accelerated and dis-
tributed NE toolbox, which implements CU and allows a PyTorch
DNN training flow to be easily converted to distributed NE.

2 BACKGROUND
Evolution Strategies (ES) refers to a class of algorithms which
approximates gradient descent through evolution-like dynamics.
When training a DNN with a ES-like algorithm, a population of
DNN offspring is generated by mutation, achieved by adding gauss-
ian noise to a parent DNN model. The offspring are evaluated
through inference on the training dataset, and the resulting fitness
(loss) values are combined with the mutation noise to generate
gradients for the parent DNN model with respect to the objective
function. Two variants of ES, denoted OpenAI-ES[2] and SNES[1]
have been utilized to train DNNs for reinforcement learning and
image classification respectively. In these works, it was observed
that for the large population sizes required for DNN training, mu-
tation and inference computation can be effectively distributed to
large numbers of computers, but gradient generation cannot. In [1]
an approximate gradient generation technique - semi-updates (SU) -
allows effective distributed computation but significantly increases
the inter-process communication requirements of the algorithm.

3 CHROMOSOME UPDATES
In the chromosome updates distribution approach (CU), each of
𝑁 worker processes executes Algorithm 1, where 𝑒𝑣𝑎𝑙 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 per-
forms inference on the training batch and 𝑎𝑙𝑙𝑔𝑎𝑡ℎ𝑒𝑟 implements
the MPI collective of the same name.

Algorithm 1: Chromosome Updates Worker Process
Input: DNN model size M, ES parent 𝜃 ∈ IR𝑀 , population size P,

number of workers N, worker index j
Output: Gradient vector ▽𝜃 𝐹

1 Initialize gaussian noise matrix Z[i][j] for 𝑖 ∈ [0, 𝑃 ) and 𝑗 ∈ [0, 𝑀)
2 for 0 ≤ 𝑖 < 𝑃/𝑁 do
3 for 0 ≤ 𝑘 < 𝑀 do
4 𝜃𝑀 [𝑘 ] = 𝜃 [𝑘 ] + 𝑍 [𝑖 + 𝑗𝑃/𝑁 ] [𝑘 ]
5 U𝐿 [𝑖 ] = 𝑒𝑣𝑎𝑙 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (𝜃𝑀 )
6 U = allgather(U𝐿)
7 for 0 ≤ 𝑖 < 𝑃 do
8 for 0 ≤ 𝑘 < 𝑀/𝑁 do
9 ▽𝜃 𝐹𝐿 [𝑘 ] = ▽𝜃 𝐹𝐿 [𝑘 ] +𝑈 [𝑖 ] ∗ 𝑍 [𝑖 ] [𝑘 + 𝑗𝑀/𝑁 ]

10 ▽𝜃 𝐹 = 𝑎𝑙𝑙𝑔𝑎𝑡ℎ𝑒𝑟 (▽𝜃 𝐹𝐿)

1https://github.com/Xilinx/DarwiNN



GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico Malik et al.

USER APPLICATION

DATA
LOAD

DNN
MODEL

OPT
INST

TRAIN
LOOP

DarwiNN

NE
OPT ENV

PyTorch

VISION NN OPT MP

D
IS
T

Figure 1: Overview of the DarwiNN software stack

CU requires 2x less communication compared to SU and is also
an exact calculation of ES gradients. For most practical values of
M and P, generating and storing the entire noise matrix Z at line
1 is unfeasible therefore parts of it must be generated coherently
on-demand (e.g. before lines 4 and 9) then discarded.

4 DARWINN
DarwiNN is a GPU-accelerated distributed neuroevolution library
designed for plug-and-play integration with existing supervised
learning flows based on Pytorch. Fig. 1 illustrates how DarwiNN
interacts with the user application and PyTorch. Users create a
DarwiNN environment object (ENV), which provides distributed
communication over MPI collectives. The NE optimizer (NE OPT)
implements the desired evolution algorithm with GPU acceleration,
and refers to the environment for communication. Gradient-based
NE optimizers estimate the gradient of the underlying fitness func-
tions and utilize Pytorch optimizers for model weight updates.
DarwiNN provides distributed implementations for OpenAI-ES[2]
and SNES[1] NE optimizers with multiple distribution methods.

5 EVALUATION
We evaluate CU scaling efficiency versus SU by training CNNs with
OpenAI-ES in a distributed context at scale. We utilize DNNs from
previous work - MNIST_3M [3] and CIF_900K and CIF_8M [1].
The suffix indicates the number of parameters of each DNN. Train-
ing scripts were implemented in DarwiNN for both distribution
methods. We execute scalability experiments on up to 48 nodes (96
GPUs) of the Dutch National Supercomputer Cartesius. We utilize
Infiniband and Ethernet network fabrics to evaluate the effect of
network throughput on the scalability of SU and CU.

Weak scaling efficiency is defined as 𝐸𝑁𝑤 = 𝑡1/𝑡𝑁 (𝑡1 and 𝑡𝑁 are
the runtimes when executing with 1 and 𝑁 GPUs respectively). It
applies when 𝑃/𝑁 is constant and we increase 𝑁 is to increase 𝑃 .
Strong scaling efficiency is defined as 𝐸𝑁𝑠 = 𝑡1/(𝑖 ∗ 𝑡𝑁 ) and applies
when 𝑃 is constant and we increase 𝑁 to reduce runtime. Fig. 2 (left)
illustrates 𝐸𝑁𝑤 for 3 per-GPU population sizes P and in scenarios
with/without networking throughput constraints. Fig. 2 (rightmost
column) illustrates 𝐸𝑁𝑠 in scenarios with/without networking con-
straints, on 1 to 4 nodes (2 GPUs per node). CU performs better
than SU under communication constraints. We observe that for CU
the coherent generation of the noise matrix becomes a bottleneck
as the number of workers increases. Additional performance could
be obtained by reducing the reseeding time of the GPU PRNG.

REFERENCES
[1] Karel Lenc, Erich Elsen, Tom Schaul, and Karen Simonyan. 2019. Non-

Differentiable Supervised Learning with Evolution Strategies and Hybrid Methods.
CoRR abs/1906.03139 (2019). arXiv:1906.03139 http://arxiv.org/abs/1906.03139

[2] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. 2017.
Evolution strategies as a scalable alternative to reinforcement learning. arXiv
preprint arXiv:1703.03864 (2017).

[3] Xingwen Zhang, Jeff Clune, and Kenneth O. Stanley. 2017. On the Relationship
Between the OpenAI Evolution Strategy and Stochastic Gradient Descent. ArXiv
abs/1712.06564 (2017).

Figure 2: Scaling Efficiency Comparison of SU and CU with and without Communication Consraints


